

SPECIFICATION FOR APPROVAL

Customer:					
Model Name	: BR101JIE4	250-B4	V.4		
Date:	2020.09.22		-		
Version: 1.0					
Preliminary Specification Final Specification For Customer's Acceptance Approved by Comment					
PLEASE RETURN T	O US ONE COPY	OF" SF	PECIFICATION		
FOR APPROVAL" W	/ITH YOUR APPF	ROVED S	SIGNATURES.		
Approved by	Reviewed	by	Prepared by		

Contents

1.Record of Revision	3
2 .General Specifications	4
3 .Input/Output Terminals	5
4. Absolute Maximum Ratings	6
5 .Electrical Characteristics	7
6 .Interface Timing	8
7. Optical Characteristics	13
8 . Environmental / Reliability Tests	16
9. Mechanical Drawing	17
1 0.Packing	18
11. Precautions For Use of LCD modules	19

1. Record of Revision

Version	Revise Date	Page	Content	Editor
1.0	2020/09/22		First Release.	

2 General Specifications

	Feature	Spec
	LCD Size	10.1 inch
	Display Format	1024 (RGB) × 600
	Interface	4Lane-MIPI
	Color Depth	16.7M
Characteristics	Technology type	a-Si
Characteristics	Display Spec.	-
	Display Mode	Normally White
	Driver IC	EK79007+EK73217
	Surface Treatment	-
	Viewing Direction	12 O'CLOCK
	Gray Viewing Direction	6 O'CLOCK
	LCM (W x H x D) (mm)	235.0*143.0*4.5
	Active Area(mm)	222.72*125.28
Mechanical	With /Without TSP	Without
	Weight (g)	TBD
	LED Numbers	42 LEDs

Note 1: Viewing direction is following the data which measured by optics equipment.

Note 2: Requirements on Environmental Protection: RoHS

Note 3: LCM weight tolerance: +/- 5%

3 Input/Output Terminals

Pin No	Symbol	I/0	Function	
1	VCOM	Р	VCOM Voltage	
2	VDD1V8	Р	Power supply for digital circuit.	
3	VDD1V8	Р	Power supply for digital circuit.	
4	NC	-	Not connection	
5	RESET	Ι	Global reset pin	
6	STBYB	I	Standby mode control. Normally pull high STBYB=L: TCON and source driver are off and all source outputs keep low level. STBYB=H: Normal operation. (Default)	
7	GND	Р	Ground	
8	MIPI-TDNO	Ι	MIPI data LaneO input	
9	MIPI-TDP0	I	MIPI data LaneO input	
10	GND	Р	Ground	
11	MIPI-TDN1	I	MIPI data Lanel input	
12	MIPI-TDP1	I	MIPI data Lanel input	
13	GND	P	Ground	
14	MIPI-CLKN	I	MIPI CLK input	
15	MIPI-CLKP	I	MIPI CLK input	
16	GND	P	Ground	
17	MIPI-TDN2	Ι	MIPI data Lane2 input	
18	MIPI-TDP2	I	MIPI data Lane2 input	
19	GND	P	Ground	
20	MIPI-TDN3	I	MIPI data Lane3 input	
21	MIPI-TDP3	I	MIPI data Lane3 input	
22	GND	P	Ground	
23	NC	_	Not connection	
24	AVDD	P	Power supply for analog circuit.	
25	NC	_	Not connection	
26	VGL	P	Negative power for TFT	
27	NC	_	Not connection	
28	VGH	P	Positive power for TFT	
29	NC	_	Not connection	
30	GND	P	Ground	

I: input, O: output, P: Power

4 Absolute Maximum Ratings

Item	Symbol	MIN	MAX	Unit	Remark
Supply Voltage	D _{Vdd}	-0.3	+2.0	V	
	Vavdd	-0.3	+15.0	V	
Analog Supply Voltage, AVDD,VGH,VGL	VGH	-0.3	+30.0	V	
, vol., vol.	VGL	-15.0	+0.3	V	
Operating Temperature	T _{OPR}	-20	70	$^{\circ}$	
Storage Temperature	T _{STG}	-30	80	$^{\circ}$	_

The absolute maximum rating values of this product are not allowed to be exceeded at any times. Should a module be used with any of the absolute maximum ratings exceeded, the characteristics of the module may not be recovered, or in an extreme case, the module may be permanently destroyed.

5 Electrical Characteristics

5.1 Operating conditions:

 $(TA = 25^{\circ} C, GND = AGND = 0V)$

Parameter	Symbol	Min	Тур.	Max	Unit	Remark
Power Voltage	VDD	1. 71	1.8	1. 89	V	
	AVDD	10.0	10. 4	10.8	V	
	VCOM	4. 0	4.4	4.8	V	Note 3
	VGH	20.0	25. 0	26. 0	V	Note 1
	VGL	- 8.0	-7.0	-6.0	V	Note 2
Input logic high voltage	V _{IH}	0.8VDD	_	VDD	V	
Input logic low voltage	V _{IL}	0	_	0. 2VDD	V	

Note:

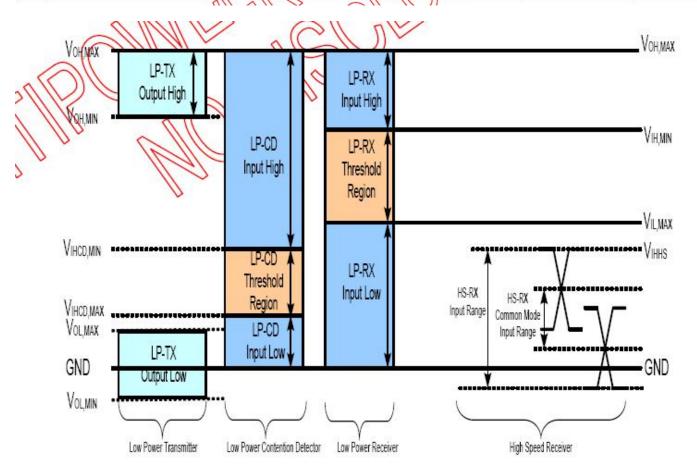
- *1. VGH is TFT Gate operating Voltage.
- *2. VGL is TFT Gate operating Voltage.

 The storage structure of this model is Cst (Storage on Common)
- *3. Vcom must be adjusted to optimize display quality Crosstalk, Contrast Ratio and etc.

5.2 Driving Backlight

Item	Symbol	MIN	TYP	MAX	Unit	Remark
LED current	l _F	126	140	175	mA	
Power Consumption		-	-	-	mW	
LED Voltage	V _F	17.4	18.3	20.4	V	Note 1
LED Life Time	W _{BL}	30000	-	-	Hr	Note 2

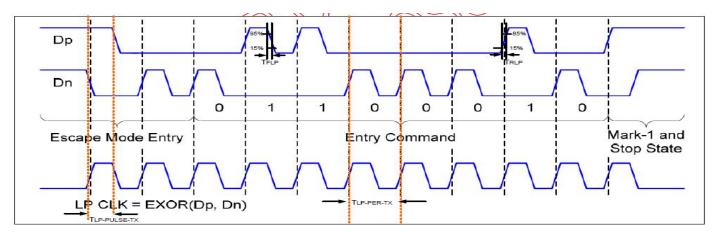
Note 1: There are 6series*7=42 LED


Note 2: The "LED life time" is defined as the module brightness decrease to 50% original brightness at Ta=25°C and IL =140mA. The LED lifetime could be decreased if operating IL is lager than 175mA.

6 AC electrical Specification & Interface Timing

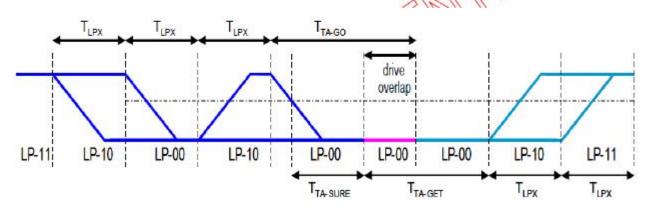
6.1MIPI Interface DC Characteristic

Parameter	Symbol	Min.	Тур.	Max.	Unit
	MIPI Charac	teristics for High S	peed Receiver	0.	
Single-ended input low voltage	VILHS	-40		(# -	mV
Single-ended input high	VIHHS	X.=		460	mV
voltage					
Common-mode voltage	VCDRXDC	70	2.5	330	mV
Differential input impedance	ZID		100		ohm
HS transmit differential	[Vod]	140	200	250	mV
voltage(VOD=VDP-VDN)	100 1000		1		
	MIPI Chara	acteristics for Low	Power Mode		
Pad signal voltage range	VI	-50	1/20	1350	mV
Ground shift	VGNDSH	-50	(1/4	50	mV
Logic 0 input threshold	VIL	0		550	mV
Logic 1 input threshold	VIH	880		1350	mV
Input hysteresis	VHYST	25	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	•	mV
Output low level	Vol	-50		5 0	mV
Output high level	Vон	MAIN	1.2	1.3	V
Output impedance of Low	ZOLP /	>\\ 80\\	(100///	125	ohm
Power Transmitter	1000		$(C_{\parallel})_{\parallel}$		
Logic 0 contention threshold	VILED, MAX	() - (C		200	mV
Logic 0 contention threshold	MAN CO SHEK	450		-	mV



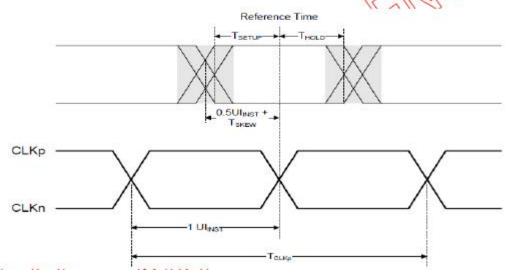
6.2 MIPI AC Characteristic

6.2.1 LP Transmitter AC Specification

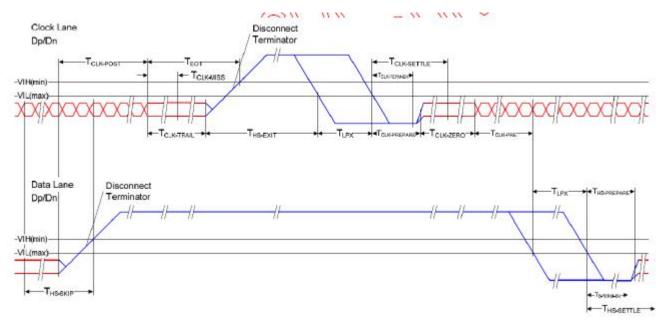

Parameter		Symbol	Min	Тур	Max	Units	Notes
15%~85% risir	ng time and falling time	TRLP /TFLP	V-	-	25	ns	3 4 3
30%~85% risir	ng time and falling time	TREOT	Y=		35	ns	33 4 31
Pulse width of LP	First LP EXOR clock pulse after STOP state or						-
exclusive-OR clock	Last pulse before stop state	TLP-PULSE-TX	40	-	A Do	ns	
	All other pulses		20	- <<	1/1/	ns	-
Period of the L	P EXOR clock	TLP-PER-TX	90	7	11-110	mV/ns	()
Slew Rate @C	LOAD =0pF		30	1	500	mV/ns	()
Slew Rate @C	LOAD =5pF	δ V/δ tsr	30		200	mV/ns	(-)
Slew Rate @C	LOAD =20pF		30	11110	150	mV/ns	(-)
Slew Rate @C	LOAD =70pF		30	())	100	mV/ns	-
Load Capacita	nce	TRLP			78	pF	-
Load Capacita	noc	- TRLP	11/1	1		ρı	257-11

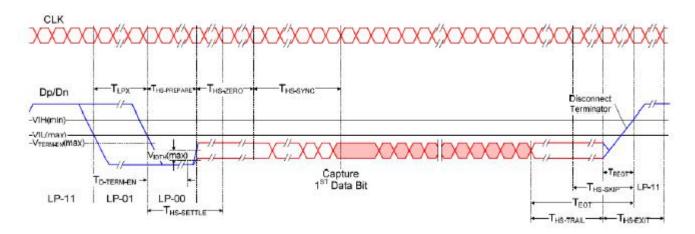
6.2.2 Turnaround Procedure

Turnaround Procedure Operation Timing Parameters


Parameter	Symbol	Min	Тур	Max	Units
Length of any Low-Power state period: Master side	TLPX	50	-	75	ns
Length of any Low-Power state period: Slave side	TLPX	50	55.56	58.34	ns
Ratio of TLPX(Master)/ TLPX (Slave) between Master and Slave side	Ratio T _{LPX}	2/3	J+8	3/2	
Time-out before new TX side start driving	T _{TA-Sure}	TLPX		2T _{LPX}	ns
Time to drive LP-00 by new TX	T _{TA-GET}	15 5 83	5TLPX	11	ns
Time to drive LP-00 after Turnaround Request	T _{TA-GO}	15-00	ATT.RX		ns

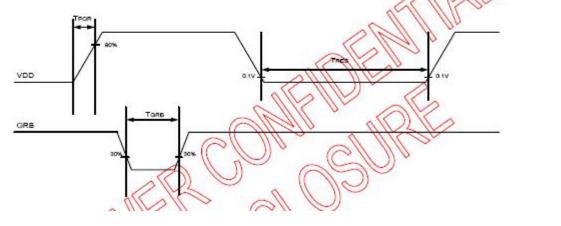
. . High speed transmission

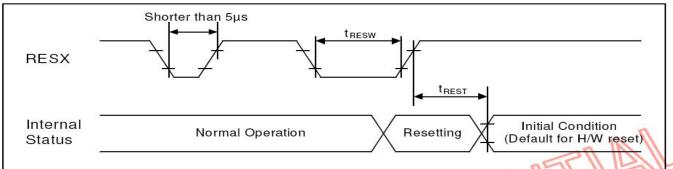

Parameter	Symbol	Min	Тур	Max	Units
UI instantaneous	Ülinst	2		12.5	ns
Data to Clock Skew(measured at transmitter)	Тѕкеw(тх)	-0.15	<u>e</u>	0.15	Ulinst
Data to Clock Setup time(measured at receiver)	Tsetup(RX)	0.15	<u> </u>	(2)	Ulinst
Data to Clock Hold time(measured at receiver)	THOLD(RX)	0.15	<u> </u>	(m)	Ulinst
20%~80% rise time and fall	Tr, Tf	150		3/1/10	ps
time		948	÷ .	1/0.3/11	Ulinst


6.2.4 High Speed Clock Transmission

Parameter	Symbol	Min	Тур	Max	Units
Time that the transmitter shall continue sending HS clock after the last associated Data Lane has transitioned to LP mode	TCLK-POST	60+52UI		-	ns
Detection time that the clock has stopped toggling	TCLK-MISS	*	1.0	60	ns
Time to drive LP-00 to prepare for HS clock transmission	TCLK-PREPARE	38	- 0	95	ns
Minimum lead HS-0 drive period before starting clock	TCLK-PREPARE + TCLK-ZERO	300	200		ns
Time to enable Clock Lane receiver line termination measured from when Dn cross VIL,MAX	THS-TERM-EN		1-110	38	ns
Minimum time that the HS clock must be prior to any associated data lane beginning the transmission from LP to HS mode	TCLK-PRE		1	3 7 33	UI
Time to drive HS differential state after last payload clock bit of a HS transmission burst	TCLK-TRAIL	60		323	ns

6.2.5 High Speed Data Transmission in Bursts





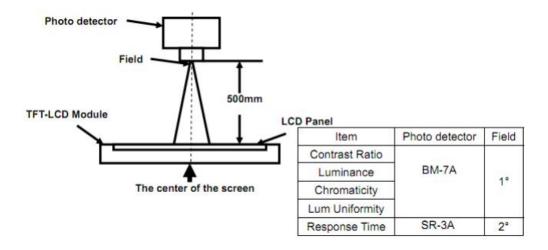
6.4 Reset Timing:

VDD/GRB AC characteristic

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
VDD power slew rate	TPOR		-	20	ms	From 0 to 90% VDD
GRB active pulse width	TGRB	1	-	×=-	ms	VDD=VDD_IF= 1.8V
VDD resettle time	Tres	1		(-)	S	M 11 /

7 Optical Characteristics

Items		Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Viewing angles		θτ		55	70	-	Degree	
		θ_{B}	Center	45	60	-		Noto
viewing and	lic2	θL	CR≥10	60	70	_	Degree.	Note2
		θR		60	70	_		
Contrast Ra	atio	CR	⊖ =0	600	800	-	-	Note1, Note3
Response T	imo	Ton	25°C	ı	10	15	ms	Note1,
Response	IIIIE	T _{OFF}	25 C	ı	15	20		Note4
	White			0.230	0.280	0.330	-	
	vviile	Yw		0.280	0.330	0.380	-	
	Red	X _R			TBD		-	
Chromaticity	IXEU	Y_R	Backlight is on		TBD		-	Note1,
Cilionalicity	Gree	X_{G}			TBD		-	Note5
	n	Y_{G}			TBD		-	
	Blue				TBD		-	
	Diue	Y _B			TBD		-	
Uniformity	У	U		70	75	-	%	Note1, Note6
NTSC					50		%	Note5
Luminance		L		400	450			Note1, Note7


Test Conditions:

- 1. IF= 20mA(one channel), the ambient temperature is 25°C.
- 2. The test systems refer to Note 1 and Note 2.

Note 1: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 5 minutes operation, the optical Properties are measured at the center point of the LCD screen. All input terminals LCD panel must be ground when measuring the center area of the panel.

Note 2: Definition of viewing angle range and measurement system. Viewing angle is measured at the center point of the LCD by CONOSCOPE (ergo-80).

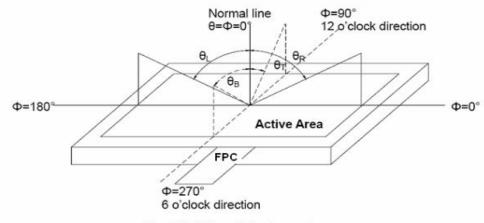
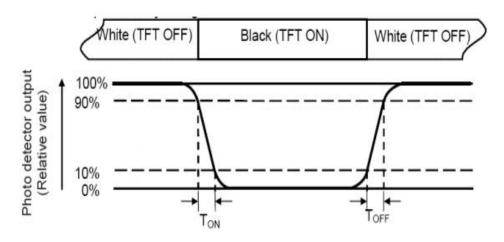


Fig. 1 Definition of viewing angle


Note 3: Definition of contrast ratio

Contrast ratio (CR) = $\frac{\text{Luminance measured when LCD is on the "White" state}}{\text{Luminance measured when LCD is on the "Black" state}}$

Note 4: Definition of Response time

The response time is defined as the LCD optical switching time interval Between "White" state and "Black" state. Rise time (TON) is the time between Photo detector output intensity changed from 90% to 10%. And fall time (TOFF) is The time between photo detector output intensity changed from 10% to 90%

Note 5: Definition of color chromaticity (CIE1931)

Color coordinates measured at center point of LCD.

Note 6: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer Fig. 2). Every measuring point is placed at the Center of each measuring area

Luminance Uniformity (U) = Lmin/ Lmax X100%

L----- Active area length W---- Active area width

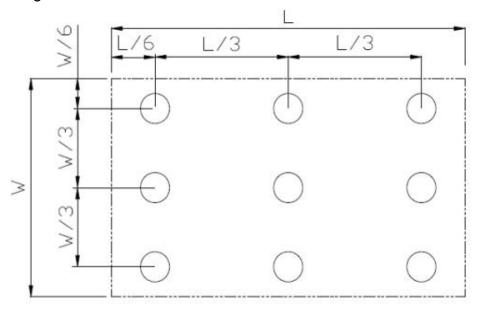


Fig. 2 Definition of uniformity

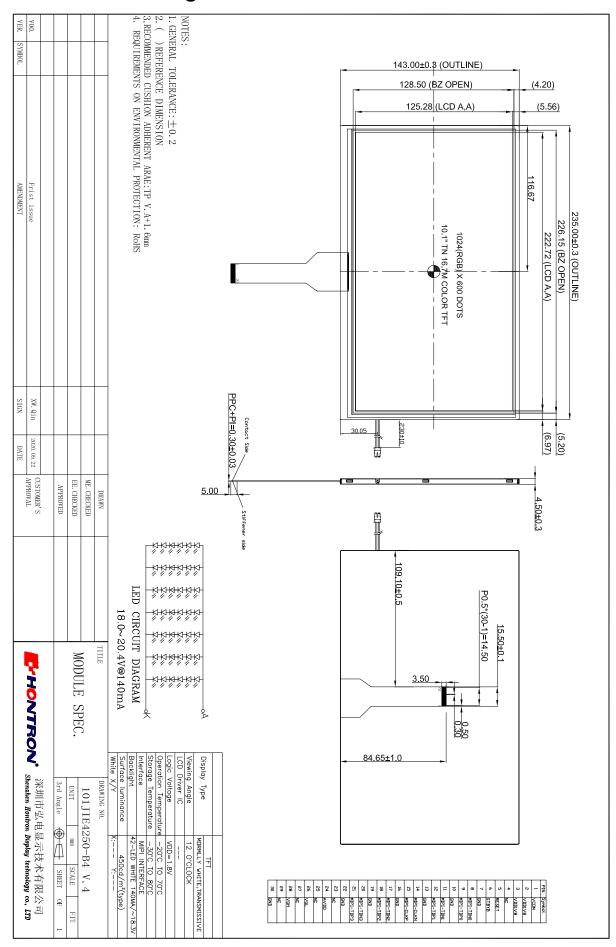
Lmax: The measured maximum luminance of all measurement position.

Lmin: The measured minimum luminance of all measurement position.

Note 7: Definition of Luminance:

Measure the luminance of white state at center point.

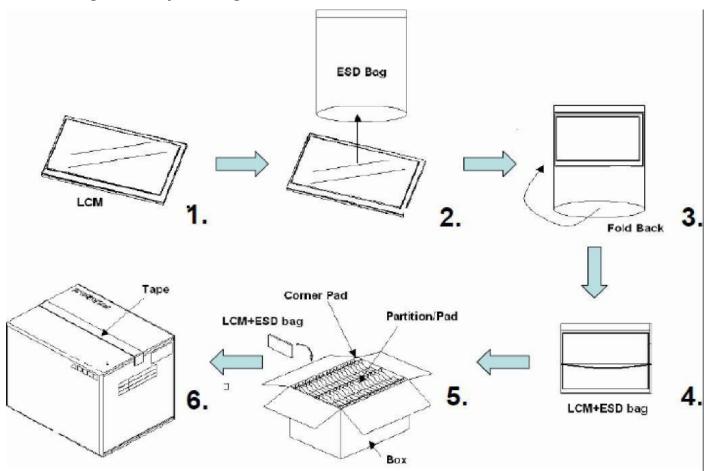
8 Environmental / Reliability Tests


No	Test Item	Condition	Remarks
1	High Temperature Operation	Ts= +70°C, 96hrs	Note 1 IEC60068-2-2, GB2423. 2-89
2	Low Temperature Operation	Ta= -20℃, 96hrs	Note 2 IEC60068-2-1 GB2423.1-89
3	High Temperature Storage Ta= +80°C, 96hrs		IEC60068-2-2 GB2423. 2-89
4	Low Temperature Storage	Ta= -30℃, 96hrs	IEC60068-2-1 GB/T2423.1-89
5	High Temperature & Humidity Storage	i la= +600 day RH may 46 nours	
6	Thermal Shock -30°C 30 min ~ +80°C 30 min (Non-operation) Change time: 5min, 30 Cycle		Start with cold temperature, end with high temperature IEC60068-2-14, GB2423.22-87
7	Electro Static Discharge (Operation)	C=150pF, R=330 Ω , 5 points/panel Air:±8KV, 5 times; Contact: ±4KV, 5 times; (Environment: 15 $^{\circ}$ C ~ 35 $^{\circ}$ C, 30% ~ 60%, 86Kpa ~ 106Kpa)	IEC61000-4-2 GB/T17626.2-1998
8	Vibration (Non-operation) Frequency range: 10~55Hz, Stroke: 1.mm Sweep: 10Hz~55Hz~10Hz 2 hours for each direction of X .Y. Z. (package condition)		IEC60068-2-6 GB/T2423.5-1995
9	Shock (Non-operation)	60G 6ms, ± X, ±Y , ± Z 3 times for each direction	IEC60068-2-27 GB/T2423.5-1995
10	Package Drop Test	Height: 60 cm, 1 corner, 3 edges, 6 surfaces	IEC60068-2-32 GB/T2423.8-1995

Note: 1. T_S is the temperature of panel's surface.

2. Ta is the ambient temperature of sample.

9 Mechanical Drawing



1 0.Packing

10.1Packing form

LCM Model	LCM Qty. in the box	Inner Box Size (mm)	Note
101JIE4250 -B4 V.4	40 pcs/box	430±5 x 320±5 x 210±5	

10.2 Packing assembly drawings

Items	Material	Notice
Box	Corrugated Paper Board	AB Flute
Partition/Pad	Corrugated Paper Board	B Flute
Corner Pad	Corrugated Paper Board	AB Flute
ESD bag	PE	

11. Precautions for Use of LCD modules

11.1 Handling Precautions

- 11.1.1. The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- 11.1.2. If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.
- 11.1.3. Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- 11.1.4. The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- 11.1.5. If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:
 - Isopropyl alcohol
 - Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

Water; Ketene; Aromatic solvents

- 11.1.6. Do not attempt to disassemble the LCD Module.
- 11.1.7. If the logic circuit power is off, do not apply the input signals.
- 11.1.8. To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
- 11.1.8.1. Be sure to ground the body when handling the LCD Modules.
- 11.1.8.2. Tools required for assembly, such as soldering irons, must be properly ground.
- 11.1.8.3. To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
- 11.1.8.4. The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.

11.2 Storage Precautions

- 11.2.1. When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.
- 11.2.2. The LCD modules should be stored under the storage temperature range If the LCD modules will be stored for a long time, the recommend condition is:

Temperature : 0° C ~ 40°C Relatively humidity: ≤80%

11.2.3. The LCD modules should be stored in the room without acid, alkali and harmful gas.

11.3 Transportation Precautions

The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.