

Product Specification

Customer:	
Model Name:	BR070JIH1826-E3 V.10
Date:	2021/10/14
Version:	1.0

Preliminary Specification

□ Final Specification

For Customer's Acceptance

Approved by	Comment			

Approved by	Reviewed by	Prepared by

Approved by	Reviewed by	Prepared by

Contents

1.Record of Revision	3
2 .General Specifications	4
3 .Input/Output Terminals	5
4. Absolute Maximum Ratings	6
5 .Electrical Characteristics	6
6 .Interface Timing	8
7. Optical Characteristics	10
8 . Environmental / Reliability Tests	13
9. Mechanical Drawing	14
1 0.Packing	16
11. Precautions For Use of LCD modules	177

1. Record of Revision

Version	Revise Date	Content	Editor
1.0	2021/10/14	First Release.	

2 General Specifications

	Feature	Spec
	LCD Size	6.95 inch
	Display Format	600 (RGB) ×1024
	Interface	4Line MIPI
	Color Depth	16.7M
Characteristics	Technology type	a-Si
Characteristics	Display Spec.	IPS
	Display Mode	Normally Black
	Driver IC	OTA7290B-C
	Surface Treatment	Anti-Glare
	Viewing Direction	ALL
	Gray Viewing Direction	Free
	LCM (W x H x D) (mm)	163.34*95.1*2.6
	Active Area(mm)	152.37*89.28
Mechanical	With /Without TSP	Without TP
	Weight (g)	TBD
	LED Numbers	18 LEDs

Note 1: Viewing direction is following the data which measured by optics equipment.

Note 2: Requirements on Environmental Protection: RoHS

Note 3: LCM weight tolerance: +/- 5%

3 Input/Output Terminals

Pin No	Symbol	I/0	Function
1~3	LED-A	Р	Power for LED backlight (Anode)
4	NC		Not Connect
5~8	LED-K	Р	Power for LED backlight (Cathode)
9 [~] 10	GND	Р	Ground
11	MIPI_2P	Ι	Data input
12	MIPI_2N	Ι	Data input
13	GND	Р	Ground
14	MIPI_1P	Ι	Data input
15	MIPI_1N	Ι	Data input
16	GND	Р	Ground
17	CLK-P	Ι	Clock Input.
18	CLK-N	Ι	Clock Input.
19	GND	Р	Ground
20	MIPI_OP	Ι	Data input
21	MIPI_ON	Ι	Data input
22	GND	Р	Ground
23	MIPI_3P	Ι	Data input
24	MIPI_3N	Ι	Data input
25	GND	Р	Ground
26	VDDI	Р	Power supply for digital circuit.
27	RES	Ι	Global reset pin.
28	GND	Р	Ground
29	VDDI	Р	Power supply for digital circuit.
30	VDD	Р	Power supply for analog circuit.
31	VDD	Р	Power supply for analog circuit.

I: input, O: output, P: Power

4 Absolute Maximum Ratings

Item	Symbol	MIN	MAX	Unit	Remark
Supply Voltage	V_{dd}	-0.3	+3.6	V	
Analog Supply Voltage, AVDD	Vavdd	-0.3	+15.0	V	
Operating Temperature	T _{OPR}	-20	60	°C	
Storage Temperature	T _{STG}	-30	80	°C	

The absolute maximum rating values of this product are not allowed to be exceeded at any times. Should a module be used with any of the absolute maximum ratings exceeded, the characteristics of the module may not be recovered, or in an extreme case, the module may be permanently destroyed.

5 Electrical Characteristics

5.1 Operating conditions:

 $(TA = 25^{\circ} C, GND = 0V)$

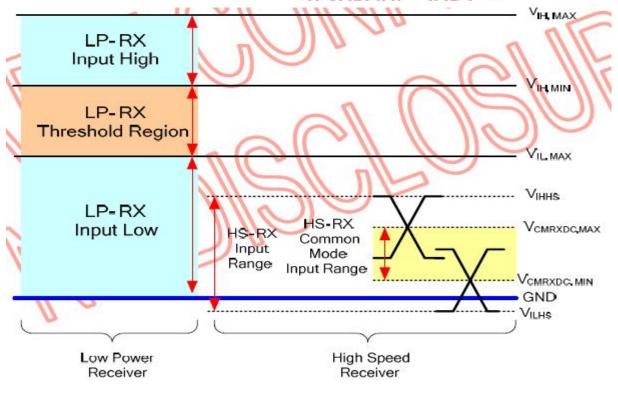
Parameter	Symbol	Min	Тур.	Max	Unit	Remark
Dowon Voltoro	VDD	3.0	3.3	3.5	V	
Power Voltage	VDDI	1.4	1.5	1.6	V	
Input logic high voltage	VIH	0.8VDDI	-	VDDI	V	
Input logic low voltage	VIL	0	-	0.2VDDI	V	

5.2 Driving Backlight

Item	Symbol	MIN	ТҮР	MAX	Unit	Remark
LED current	l _F	110	120	150	mA	
Power Consumption		1.0	1.2	1.5	mW	
LED Voltage	VF	9.0	9.3	9.9	V	Note 1
LED Life Time	W _{BL}	-	30000	-	Hr	Note 2,3

Note 1 : There are 3Groups*6=18 LED

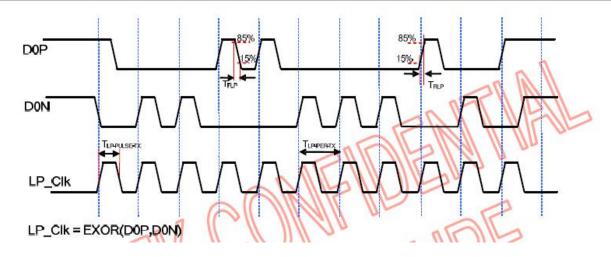
Note 2 : **Ta = 25**℃


Note 3 : Brightess to be decreased to 50% of the initial value

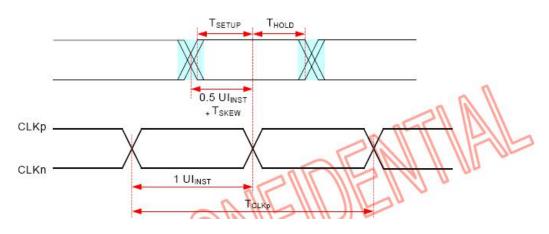
6 Interface Timing

6.1 MIPI Interface DC Characteristic

MIPI Characteristics for High Spee	d Receiver					
Single-endedl input low voltage	VILHS	-40	3 .	-	mV	
Single-endedl input high voltage	VIHHS	-	()	460	mV	
Common-mode voltage	VCMRXDC	155	9 4 1	330	mV	n
Differential input impedance	ZID	80	100	125	ohm	
Differential input high threshold	VIDTH	-	1.51	70	mV	
Differential input low threshold	VIDTL	70	-	-	mV 👝	
MIPI Characteristics for Low Powe	r Mode				0	
Pad signal voltage range	VI	-50		1350	mV	
Ground shift	V _{GNDSH}	-50	- /	50	mV	
Output low level	V _{OL}	-150	717 -	150	mV	
Output high level	V _{OH}	11	1.2	1.3	VE	



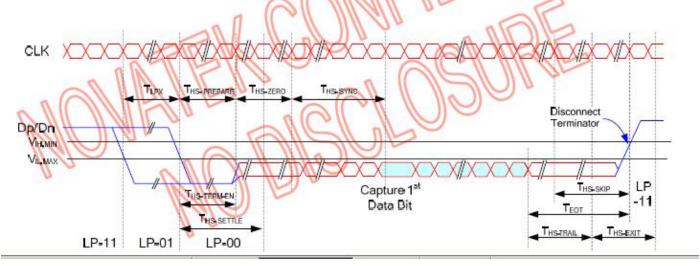
6.2 MIPI AC Characteristic


6.2.1 LP Transmitter AC Specification

Parameter	Symbol	Min	Тур	Max	Units
15%-85% rise time and fall time	T _{RLP} / T _{FLP}	8 0 3	-	25	ns
Pulse width of the LP exclusive-OR clock	T _{LP-PULSE-TX}	50	.	-	ns
Period of the LP exclusive-OR clock	T _{LP-PER-TX}	100		-	ns

6.2.4 High Speed Clock Transmission

Parameter	Symbol	Min	Тур	Max	Units
UI instantaneous	UIINST	1.0	200	12.5	ns
Data to Clock Setup Time	TSETUP	0.3	8570	-	UIINST
Data to Clock Hold Time	T _{HOLD}	0.3	-	<u> </u>	UIINST

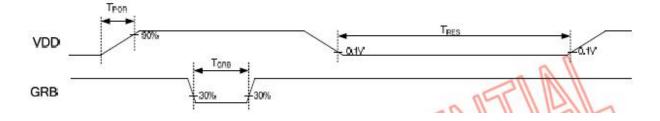

6.2.5 High Speed Data Transmission in Bursts

Parameter	Symbol	Min	Тур	Max	Units
Time to drive LP-00 to prepare for HS transmission	THS-PREPARE	40+4UI	-	85+6UI	ns
Time from start of tHS-TRAIL or tCLK-TRAIL period to start of LP-11 state	T _{EOT}	÷	-	105+12UI	ns
Time to enable Data Lane receiver line termination measured from when Dn cross VIL,MAX	T _{HS-TERM-EN}		-	35+4UI	ns
Time to drive flipped differential state after last payload data bit of a HS transmission burst	T _{HS-TRAIL}	60+4UI	200	~	ns
Time-out at RX to ignore transition period of EoT	T _{HS-SKIP}	40	-	55+4UI	ns
Time to drive LP-11 after HS burst	T _{HS-EXIT}	100			ns
Length of any Low-Power state period	TLPX	50	-	0	ns
Sync sequence period	T _{HS-SYNC}	÷	8UI	IF A	ns
Minimum lead HS-0 drive period before the Sync sequence	T _{HS-ZERO}	105+6UI	nSP	1AI	ns

Note:

 The minimum value depends on the bit rate. Implementations should ensure proper operation for all the supported bit rates.

- 2. UI means Unit Interval, equal to one half HS clock period on the Clock Lane.
- T_{LPX} is an internal state machine timing reference. Externally measured values may differ slightly from the specified values due to asymmetrical rise and fall times.



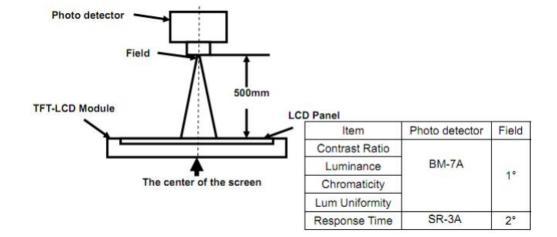
6.3 Reset Timing:

VDD/GRB AC characteristic

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
VDD power source slew time	TPOR		8-979-9	20	ms	From 0V to 90% VDD
GRB active pulse width	TGRB	1	0-1170-0		ms	VDD = 3.3V
VDD resettle time	T _{RES}	1	0-1 5 4-0		s	

7 Optical Characteristics

Items		Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
				80	89	-		
Viewing angles		θ_{B}	Center	80	89	-	Degree.	Note2
	jies	θ_{L}	CR≥10	80	89	-	Degree.	notez
		θ _R		80	89	-		
Contrast Ra	atio	CR	Θ =0	600	800	-	-	Note1, Note3
Boononoo T	imo	Ton	25°C	-	13	20	ma	Note1,
Response T	IIIIe	T _{OFF}	250	-	15	25	ms	Note4
	White	Xw			TBD		-	
	vviiite	Yw	Backlight		TBD		-	
	Red	X _R			TBD		-	
Chromaticity	Reu	Y_R			TBD		-	Note1,
Chromaticity	Gree	X_{G}	is on		TBD		-	Note5
	n	Y_G			TBD		-	
	Blue	X _B			TBD		-	
	Diue	Υ _B			TBD		-	
Uniformit	y	U		80	-	-	%	Note1, Note6
NTSC					50		%	Note5
Luminanc	e	L		280	300			Note1, Note7

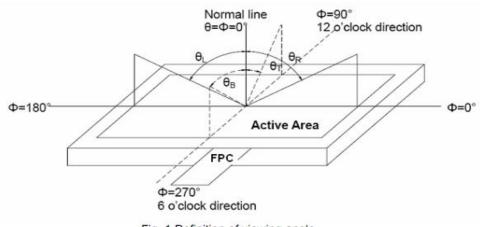

Test Conditions:

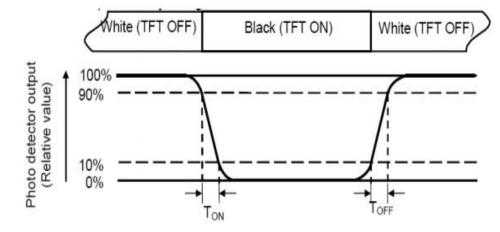
- 1. IF= 20mA(one channel), the ambient temperature is 25°C.
- 2. The test systems refer to Note 1 and Note 2.

Note 1: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 5 minutes operation, the optical Properties are measured at the center point of the LCD screen. All input terminals LCD panel must be ground when measuring the center area of the panel.

Note 2: Definition of viewing angle range and measurement system. Viewing angle is measured at the center point of the LCD by CONOSCOPE (ergo-80).




Fig. 1 Definition of viewing angle

Note 3: Definition of contrast ratio

Note 4: Definition of Response time

The response time is defined as the LCD optical switching time interval Between "White" state and "Black" state. Rise time (TON) is the time between Photo detector output intensity changed from 90% to 10%. And fall time (TOFF) is The time between photo detector output intensity changed from 10% to 90%

Note 5: Definition of color chromaticity (CIE1931)

Color coordinates measured at center point of LCD.

Note 6: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer Fig. 2). Every measuring point is placed at the Center of each measuring area

Luminance Uniformity (U) = Lmin/ Lmax X100%

L-----Active area length W----- Active area width

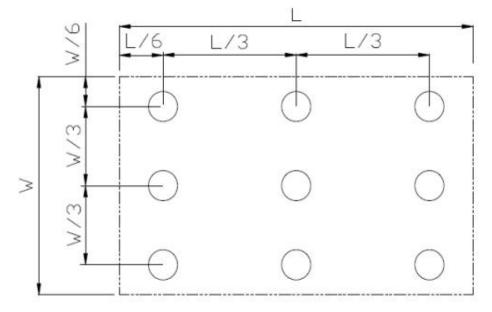


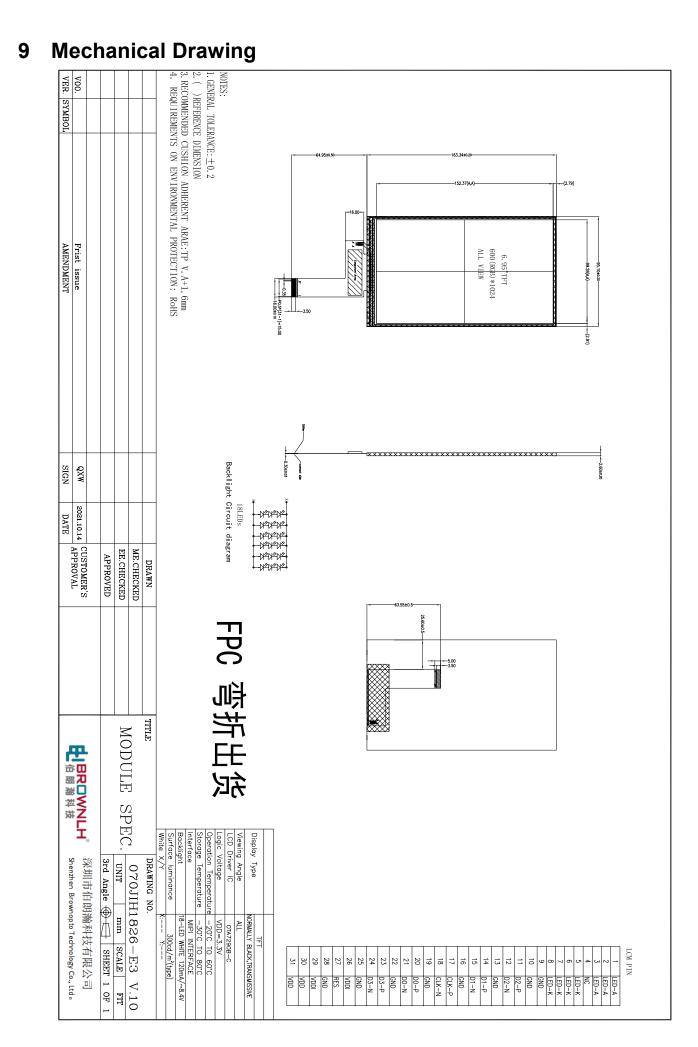
Fig. 2 Definition of uniformity

Lmax: The measured maximum luminance of all measurement position.

Lmin: The measured minimum luminance of all measurement position.

Note 7: Definition of Luminance:

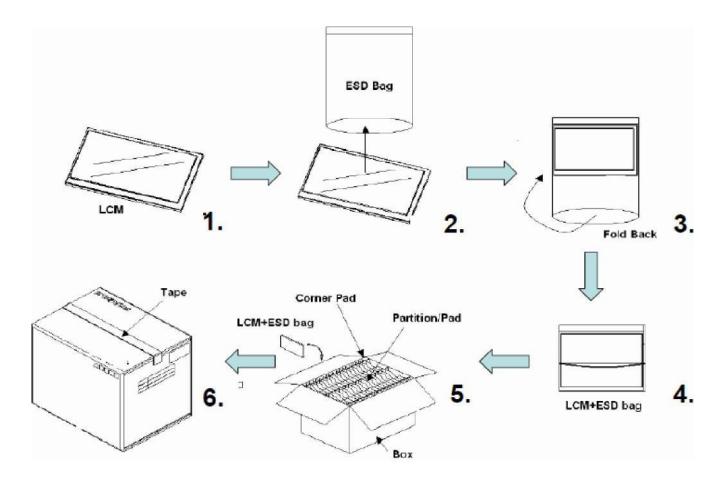
Measure the luminance of white state at center point.



8 Environmental / Reliability Tests

Item	Test C	Remark	
HighTemperature Storage	Ts = 80°℃	240 hrs	Note 2,Note 4
Low TemperatureStorage	$T_s = -30^{\circ}C$ 240 hrs		Note 2,Note 4
High TemperatureOperation	Ta = 70℃	240hrs	Note 1,Note 4
Low Temperature Operation	Ta = −20°C	240hrs	Note 1,Note 4
Double 85 test	+85℃,85%RH	48hrs	Note 4
Operate at High Temperature and Humidity	+60°C,90%RH	240 hrs	Note 4
Thermal Shock	-30° C / 30 min ~ $+80^{\circ}$ C / 30 min for a total 100 cycles, Start with cold temperature and end with high temperature		Note 4
Vibration Test	Frequency range:10~55Hz Stroke:1.5mm Sweep:10Hz~55Hz~10Hz 2 hours for each direction of X. Y. Z. (6 hours for total)		
Mechanical Shock	100G6ms,±X,±Y, direction		
Package Vibration Test	Random Vibration : 0.015G*G/Hz from 5-200HZ, 6dB/Octave from 200 500HZ 2 hours for each direction of X. Y. Z. (6 hours for total)		
Package Drop Test	Height:60 cm 1 corner, 3 edges, 6 surfaces		
Electro Static Discharge	\pm 2KV, Human Bo 100pF/1500 Ω		

- Note 1: Ta is the ambient temperature of samples.
- Note 2: Ts is the temperature of panel's surface.
- Note 3: In the standard condition, there shall be no practical problem that may affect the display function. After the reliability test, the product only guarantees operation, but doesn't guarantee all the cosmetic specification.
- Note 4: Before cosmetic and function tests, the product must have enough recovery time, at least 2 hours at room temperature.



1 0.Packing

LCM Model	LCM Qty. in the box	Inner Box Size (mm)	Note
070JIH1826-E3 V.10	60 pcs/box	490±5 x 340±5 x 250±5	

11.2 Packing assembly drawings

Items	Material	Notice
Box	Corrugated Paper Board	AB Flute
Partition/Pad	Corrugated Paper Board	B Flute
Corner Pad	Corrugated Paper Board	AB Flute
ESD bag	PE	

11. Precautions for Use of LCD modules

11.1 Handling Precautions

11.1.1. The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.

11.1.2. If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.

11.1.3. Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.

11.1.4. The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.

11.1.5. If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:

- Isopropyl alcohol
- Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following: Water ; Ketene ; Aromatic solvents

- 11.1.6. Do not attempt to disassemble the LCD Module.
- 11.1.7. If the logic circuit power is off, do not apply the input signals.
- 11.1.8. To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
- 11.1.8.1. Be sure to ground the body when handling the LCD Modules.
- 11.1.8.2. Tools required for assembly, such as soldering irons, must be properly ground.
- 11.1.8.3. To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
- 11.1.8.4. The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.

11.2 Storage Precautions

11.2.1. When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.

11.2.2. The LCD modules should be stored under the storage temperature range If the LCD modules will be stored for a long time, the recommend condition is:

Temperature : 0° C ~ 40° C Relatively humidity: $\leq 80^{\circ}$

11.2.3. The LCD modules should be stored in the room without acid, alkali and harmful gas.

11.3 Transportation Precautions

The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.